Pregnancy, growth and drought

We currently have transmitters implanted in six female rattlesnakes. We have been tracking Female 39 since 2014 and Females 41 and 53 since 2015 and all are currently pregnant and in their gestation shelters where they will likely thermoregulate for six weeks or more. Furthermore, they have all produced a brood during each season we have been following them, so this will be the third year in a row for Female 39 and the second in a row for 41 and 53. And we don’t know how many consecutive years they might have reproduced before that! Each has returned to the same gestation refuge each year, although 41 uses a different location than 39 and 53, who gestate together. We have also found pregnant unmarked females in both places in past seasons with these girls.

That’s not all. We have three new females this season, numbers 66, 75 and 80. These snakes do not appear to have settled into gestation shelters yet (and I don’t know where they were in previous years) but I just implanted a transmitter in Female 80 a few weeks ago and could feel six fetuses in her belly…it felt like she had swallowed six soft ping pong balls! I’m not sure about the reproductive status of 66 and 75, since their surgeries were earlier in the year and both had so much material in their intestines that it made identifying small embryos with confidence difficult.

Another opportunity to assess the health and growth of the rattlesnakes at Effie Yeaw Nature Center occurred day-before-yesterday (13 July) when Kelly came across an adult rattlesnake at the end of the Visitor Center building early in the morning. Per protocol, she expertly maneuvered it into the capture bag and deposited it in the holding barrel for me. It turned out to be Male 52, a rattlesnake previously captured, processed, and released without a transmitter early in May 2015. At that time, he was 30.7 inches in total length and weighed 11.6 ounces. He now measures 33.5 inches and weighs 18.9 ounces. While increasing 9% in length and 63% in mass in 14 months, he has shed three times (see photo below).

For those of you new to the blog, I inject acrylic paint into the first hollow segment of the rattle
For those of you new to the blog, I inject acrylic paint into the first hollow segment of the rattle, next to the black live segment at the end of the tail. With a different color combination for each snake, it allows me to visually identify them. As the snake grows and sheds the corneal layer of its skin periodically, it produces a new rattle segment with each shed. The segment with the paint is thus moved away from the tail until it eventually breaks off. When this seems imminent, as in Male 52 above, I inject paint into another segment to preserve the marking.

 

The constant growth of all the rattlesnakes being sampled and the annual reproduction of many of the females attests to the health of not just the rattlesnake population but the overall small animal community in the riparian habitat at Effie Yeaw Nature Center. While the region is undeniably in a severe long-term drought, enough local rainfall has occurred to keep the annual plants, shrubs, some trees, and the food web they support healthy.

Finally, I want to share with you a little bit about a presentation I made at the annual Joint Meeting of Ichthyologists and Herpetologists last week in New Orleans. I have reproduced the published abstract (summary) of my talk below. Please excuse the Latin names. Crotalus scutulatus is the scientific term for the Mohave rattlesnake and Crotalus oreganus is our own northern Pacific rattlesnake. While recent drought has not yet affected the rattlesnakes or their prey in the areas of northern California I have sampled, 2002 was a rainless year in the Mohave Desert, with no plant growth and a dramatic reduction in the availability of kangaroo rats and other small mammals that make up the great majority of the rattlesnakes’ diet there. During 2002, Mohave rattlesnakes changed their behavior very significantly, staying tightly coiled and avoiding wind and sun while moving very little and not courting or mating.

Cardwell abstract

The take-home message I delivered in New Orleans was that (1) these animals are used to hot dry summers and get most of their water from their prey; (2) regional drought does not necessarily equal local drought; (3) rattlesnake behavior is probably not affected by drought until prey availability is affected; (4) water-stressed rattlesnakes minimize exposed skin by remaining coiled most of the time; (5) when water-stressed, they don’t move more, they move a lot less than usual; and (6) there is no evidence that they leave their normal home range during a drought.

In other words, there is zero evidence to support the frequent news media claims that drought drives rattlesnakes into yards.

The effect of drought on rattlesnakes

Field studies of rattlesnakes indicate that they cease most movement when water stressed and remain in their established home ranges, rather than migrating into developed areas in search of water, despite frequent claims to the contrary.

In my last post, I mentioned witnessing Females 41 and 47 feeding, as well as finding new Female 53, who was very heavy and likely pregnant. Since then, I have come across Female 41 eating another vole, found another new female (#54) that is heavy and definitely pregnant, and come across a fat but unidentified rattlesnake in the refuge where Females 41 and 43 had babies last year. I could only see the face and a bit of a flank of the unidentified animal (photo below) so I couldn’t even determine sex.

unidentified Crotalus oreganus under log at Refuge 03 on 03 June 2015, Effie Yeaw Nature Center Origonal RAW IMG_7387.CR2

It could be a male that has just eaten a ground squirrel pup – but it is more likely another pregnant female. We now have five telemetered females (39, 41, 47, 53 and 54) and all are in great shape, with three either confirmed or likely pregnant and the others in good shape to reproduce although I have not yet had my hands on them this year to palpate for fetuses.

This brings up a timely point: This will obviously be a good year for rattlesnake reproduction in our area, despite being in the midst of an historic drought. Since the news media often quotes “experts” claiming drought “drives rattlesnakes out of the hills and into yards looking for water,” this is a great opportunity to set the record straight about how drought affects rattlesnake movement.

We live in a Mediterranean climate, historically characterized by warm dry summers and cool wet winters. Even during years with “normal” precipitation, vast tracks of mountains, foothills and many valley areas have no surface water between late spring and the return of winter rains in November or December – yet they support healthy populations of rattlesnakes. Herbivores (insects, rodents, etc.) get most of their water from the plants they eat and rattlesnakes get water from eating the herbivores. The bodies of terrestrial vertebrates are usually composed of 65–75% water, so eating a 100 gram (3.5 ounce) rodent is like drinking about 70 grams (2.5 ounces) of water for a rattlesnake (plus the nutrients and energy gained). Make no mistake, rattlesnakes suck droplets from various surfaces, including their own skin, deposited by rain and dew (photo, below) and they will certainly drink from standing water when it’s available. But especially during summer and fall, these other sources are not available and virtually all of the water a rattlesnake needs is obtained from its prey.

adult Crotalus s. scutulatus (Mohave Rattlesnake) drinking rain water near Apple Valley, San Bernardino County, California, USA [wild animal, in situ]
Mohave Rattlesnake drinking rain water from its own body. [Cardwell, M. D. 2006. Rain-harvesting in a wild population of Crotalus s. scutulatus (Serpentes: Viperidae). Herpetological Review 37:142-144.]

Rattlesnakes are models of low energy physiology. As ambush predators, they move comparatively little and rely largely on anaerobic metabolism. Their sedentary lifestyle combined with the corneal layer of their skin (full of water-blocking lipids) dramatically lowers the amount of water that passes into and out of their bodies – known as “water flux.” Nonetheless, multiple studies have shown that the most significant mechanism for water loss in terrestrial snakes is evaporation, with about 75% being lost through the skin and the remainder via exhaled breath.

During my four-year field study (2001–2004) of Mohave Rattlesnakes in southern California, I was able to compare behavior, including average daily movement and reproductive effort, between the severe drought year 2002 and 2003–2004, when rainfall returned to average or above average. I found that average daily movement during 2002 was less than one third of 2003–2004 averages. And while I encountered dozens of courting pairs during the two non-drought years, I observed a male courting a female on only one occasion in 2002. Yet these rattlesnakes continued to eat at a rate indistinguishable from the non-drought years, based on scats deposited in holding containers and later analyzed. These snakes were reducing exposed surface area (and, therefore, evaporative water loss) by remaining coiled and immobile, covering much of their skin within their coils. They even buried their coils partially in loose soil at times, covering additional skin area. Remaining stationary eliminated their ability to find and court mates but, as sit-and-wait ambush predators, it allowed them to continue to hunt – and obtain the body water of their herbivorous prey. They also positioned themselves behind vegetation and ground contours in 2002 to avoid wind and sun, both of which increase evaporation rates. You can find more details in my MS thesis.

We have seen similar behavior in Northern Pacific Rattlesnakes in recent years at my El Dorado Hills study site, where the rattlesnakes remained tightly coiled and stationary in deep chaparral on north-facing slopes during particularly hot dry summer weather. At Effie Yeaw, all of the rattlesnakes caught by staff around the ponds during the past year, as well as the telemetered rattlesnakes I have found there, have been males found during the courtship season. The females have remained in the woods, away from water sources. While the snakes will drink when they find the ponds (or other water sources), that’s not why the males are there… they’re wandering around looking for females! And, yet, the females are now fat and pregnant.

Drought probably does not affect rattlesnake movement until it becomes locally severe, as it did at my Mohave Rattlesnake study site in 2002. When the snakes start to become water stressed, they don’t set out into uncharted territory looking for surface water. Rather, they stop moving and hunker down where they can best reduce evaporative water loss while still striking any prey that wanders by. Currently, if the preserve at Effie Yeaw Nature Center is any indication, there is lots of annual plant growth and the vole and ground squirrel populations are thriving – and so are the rattlesnakes.

So when people find a rattlesnake in their yard during a drought, the most likely explanation is that it is a male looking for receptive females and the drought is not severe enough locally to stress the rattlesnakes. When they are truly water stressed, rattlesnakes move less – not more – than usual. Unlike most large mammals that have much higher metabolic and water flux rates and require standing water to drink, there is no evidence that rattlesnakes leave their established home ranges looking for water, despite the popular belief to the contrary. They do just the opposite.

Early home ranges and other news

Good news: On 25 April, I came across our Female 39, who’s transmitter had failed prematurely 19 days before. She was captured, her transmitter was surgically replaced, and she was released the next day. At her initial capture last July, she weighed 365 grams (12.9 oz) and she produced a litter of kids a couple of months later. When recaptured last weekend, she weighed 404 grams! She clearly has been hunting successfully and is in great shape to reproduce again this year. While tropical pit vipers often reproduce annually, pit vipers in temperate climates like ours often require a year or two to replenish body fat before they can sustain another pregnancy.

But annual births are not unheard of this far north. In fact, we had a female rattlesnake produce litters three years in a row in El Dorado County a few years ago. After her third litter, however, she was skin and bones and we didn’t think she would survive the winter. But she did and might have pulled through if she had not been nailed by a raptor the following spring.

One day we found her radio signal to be weak and coming from far down a canyon, well outside her typical home range. Because thick manzanita and chamise made getting to her signal very difficult, I didn’t investigate right away. Eventually, when her signal didn’t change, we burrowed through the chaparral until we got to a large live oak that stood by itself on a hillside. The snake’s transmitter was laying in the leaves under the tree, completely clean and undamaged – as if it had been surgically removed and washed! I have had telemetered rattlesnakes eaten by coyotes before but coyotes chew the transmitters. The undamaged transmitter under a lone large tree far from the snake’s last location just screamed raptor. The area was full of red-tailed hawks and there were certainly owls at night.

Back to our current study, just two males, 36 and 37, remain loose with failed transmitters. I recently shipped the other five faulty transmitters back to the manufacturer for evaluation and repair.

Last week I found one of the hollow logs frequently used by our telemetered rattlesnakes freshly ripped apart (photo below).

IMG_6373

I’m not sure what kind of animal, besides a person or a black bear, might have ripped a log apart like that. While it is certainly not impossible for a bear to stray this far downstream, it would also be attracting attention in more obvious ways. Having encountered a visitor with a snake hook off-trail a few weeks ago, I thought this might be a good time to reiterate why I am no longer publishing plots of the study animals’ travels (as I did last year) or providing more details about where they are hanging out. Too many rattlesnake researchers have had study animals captured or killed after they disclosed their locations.

But I do want to share how far the telemetered rattlesnakes have been roaming during the first six weeks of the season. The illustration below shows the home ranges used by the seven rattlesnakes with working transmitters so far this year. The solid lines are the males and dashed lines are the females. The Effie Yeaw visitor center is in the top center and the EYNC parking lot is in the top left corner of the Google Earth photo.

HRs 02May15

The most interesting finding to me is that Females 41 and 47 have been moving as much as any of the males and much farther than some. Also remember that we lost almost three weeks’ movement on Female 39 when her transmitter failed. Male 35 had a small home range last year, primarily because he hung around in the elderberry and redbud thicket next to the bike rack for so much of the summer. He spent most of the rest of his time in the meadow – and that’s where he is again. Male 40 was the last to leave his winter shelter this spring, has not moved as frequently as the other males, and I have not found him courting any females. He has always been quite under weight for his length. He is an old guy, based on his untapered rattle and an impressive collection of scars, but he seems to be getting by.

Courtship seems to have slowed a bit in the past week, with most animals by themselves and apparently hunting, at least when I have visited. Nonetheless, there should be another month or so of courtship before the summer hiatus.